In the two previous ray tracing mini-books, the reader was led through making a basic ray tracer, and no graphics background was assumed. This volume extends from the first two but uses terminology and math that will help entry into the professional world of realistic rendering.

You really need to have done integral calculus for this book. The leap in required knowledge is pretty intense, and the equation notation is quite difficult to follow (equations are all written out in plain text with no specialized mathematical formatting a la LaTeX or other math notation tools).

Further, the book basically walks you through the reasoning and work integrating a single feature, and I’m not entirely convinced that the end result is visually comparable to performing tons of samples per pixel using the previous book’s results. I’m still working my way through this one as I’m determined to see it through, but I only made it through differential calculus in school and I’m having to ask for a lot of help understanding the mathematical leaps early on from a friend of mine who tutors advanced maths. To be fair, the optimization presented is very involved and I appreciate the effort made to explain it. But if you don’t already have the maths background, this one will be pretty rough and you may find yourself disappointed when compared with progress you make when
compared to the previous two books in the series.

I like the way ray tracing is introduced

Download to continue reading...


Dmca